
A Comparison of Coordinated Planning
Methods for Cooperating Rovers

Gregg Rabideau, Tara Estlin, Steve Chien, Anthony Barrett
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive, M/S 126-347

Pasadena, CA 9 1 109
{firstname.lastname}@jpl.nasa.gov

Abstract
This paper describes and evaluates three methods for
coordinating multiple agents. These agents interact in two
ways. First, they are able to work together to achieve a
common pool of goals which would require greater time to
achieve by any one of the agents operating independently.
Second, the agents share resources that are required by the
actions needed to accomplish the goals. TheJirst coordination
method described is a centralized scheme in which all of the
coordination is done at a central location and the agents have
no autonomy at the planning level. The second method
performs goal allocation using a centralized heuristic planner
and (distributed) planners for the individual agents perform
detailed planning. The third method uses a contract net
protocol to allocate goals and then (distributed) planners for
the individual agents perform detailed planning. We compare
these approaches and empirically evaluate them using a
geological science scenario in which multiple rovers are used
to sample spectra of rocks on Mars.

1. Introduction

Significant events have recently taken place in the areas of
space exploration by planetary rovers. The Mars Pathfinder
and Sojourner missions were major successes, not only
demonstrating the feasibility of sending rovers to other
planets, but also demonstrate the utility of such missions to
the scientific community. Further missions are being
planned to send robotic vehicles to Mars (MarsO1, Mars03,
MarsOS), an asteroid (MUSES-CN) (P L 1999) as well as
the outer planets and their moons. In order to increase
science return and enable new types of observations new
missions are being proposed that employ larger sets of
robotic workers. Whether it is an unmanned spacecraft
with remote rovers, or a mix of humans and robotic
assistants, the command and control task for these
machines will be complex. While manual request and
sequence generation was possible for Sojourner, new
missions will need to automate much of this process.

While it is up to mission designers to determine the
optimal number of rovers for a given mission, multiple
rovers have three types of advantages over single rover
approaches: force multiplication, simultaneous presence
and system redundancy.

Force multiplication. Multiple rovers can perform
certain types of tasks more quickly than a single rover,
such as: performing a geological survey of a region or
deploying a network of seismographic instruments.
We call these cooperative tasks.
Simultaneous presence. Multiple rovers can perform
tasks that are impossible for a single rover. We call
these coordinated tasks. Certain types of instruments,
such as interferometers, require simultaneous presence
at different locations. Rovers landed at different
locations can cover areas with impassable boundaries.
Using communication relays, a line of rovers can
reach longer distances without loss of contact. More
complicated coordinated tasks can also be
accomplished, such as those involved in hardware
construction or repair.
System redundancy. Multiple rovers can be used to
enhance mission success through increased system
redundancy. Several rovers with the same capability
may have higher acceptable risk levels, allowing one
rover, for example, to venture farther despite the
possibility of not returning. Also, because designing a
single rover to survive a harsh environment for a long
periods of time can be difficult, using multiple rovers
may enable missions that a single rover could not
survive long enough to accomplish.

In all cases, the rovers can behave in a cooperative or even
coordinated fashion, accepting goals for the team,
performing group tasks and sharing acquired information.

Whether they are spacecraft, probes or rovers,
coordinating multiple distributed agents introduces unique
challenges for automated planning and other supporting
technology (Mataric 1995; Parker 1998). Issues arise
concerning interfaces between agents, communication
bandwidth, group command and control, and onboard
capabilities. For example, a certain level of
communication capabilities will need to be assigned to
each, possibly limiting the amount of information that can
be shared between the rovers (and ground). The mission
design will need to include a "chain of command" for the
team of spacecrafthovers, indicating which rovers are
controlled directly from the ground, and which are
controlled by other rovers or orbiting/landed spacecraft.
Finally, the onboard Tapabilities will need to be

mailto:firstname.lastname}@jpl.nasa.gov

considered, including computing power and onboard data
storage capacity. This will limit the level of autonomy each
of the rovers can have.

Many of these design issues are related, and all of
them have an impact on possible automated planning and
scheduling for the mission. The interfaces determine what
activities can be planned for each rover. The amount of
communication available will determine how much each
rover can share its plan. The control scheme will also
determine which rovers execute activities in the plans. If
one rover controls another, the “master” rover will send
activities from its plan to the “slave” rover for execution.
Decisions on the onboard capabilities of each rover,
however, will limit the independence of each rover. With
little computing power, one rover may be unable to plan
and may only be able to execute commands. More power
may allow it to plan and execute. Still more power may
allow a rover to plan for itself and other rovers.

In our approach, we examine the use of Artificial
Intelligence (AI) planning and scheduling in three different
control structures to automatically generate appropriate
low-level rover command sequences to achieve science
goals. In the three approaches, we explore a range of
distribution of the planning function ranging from a
completely centralized planner to a bidding system in
which the planning process occurs on each rover in
parallel. Other approaches to multi-agent planning have
various degrees of distribution (Mataric 1995; Parker 1998;
Hagopian, Maxwell, and Reed 1994; Cook,
Gmystrasiewicz and Holder 1996; Fischer et al. 1995;
Muller 1996).

This rest of this paper is organized in the following
manner. We begin by characterizing the multiple
cooperating rovers application domain and describe some
of the interesting challenges. Next, we introduce the
ASPEN planning and scheduling system and explain how
automated planning and scheduling techniques can be
applied to this problem. We discuss several heuristics for
solving the MTSP problem and present some results on
how they improve both system and final plan efficiency.
We then discuss the overall framework that is used to
achieve a set of geology related science goals. Next, we
discuss both how to extend this system to provide the long-
term goal of rover and spacecraft autonomy and how this
extension compares with related efforts. Finally, we
present our conclusions and discuss several of the issues
being addressed in future work.

2. Baseline Scenario
We evaluate the architectures presented in this paper using
the following geological scenario. It takes three steps to
produce a terrain model and a set of science goals over that
model. The first step creates different Martian rockscapes
by using distributions over rock types, sizes and locations.
Science goals consist of requests to take spectral
measurements at certain locations or regions. These goals
can be prioritized so if necessary, low priority goals will be

deleted first. Upon requesting spectral measurements from
this terrain during execution, rock and mineral spectral
models define how to generate sample spectra based on the
type of rock being observed.

Science goals are generated from experiments using a
(machine learning) clustering algorithm that evaluates the
current spectral data available for a particular landscape
and then determines new science goals to be achieved.
Rather than sampling over the spatial distribution of rocks,
the clustering algorithm generates science goals (i.e.
spectral readings) that will best classify rock types.

In each architecture science goals are divided among
three identical rovers. Each rover has several science
instruments on board including a camera and a
spectrometer. Other onboard resources include a drive
motor, a solar-array panel that provides power for all rover
activities, and a battery that provides backup power when
no solar-array power is available. The battery can also be
recharged using the solar-array when solar power is not
being used to capacity. Collected science data is
immediately transmitted to a lander where it is stored in
memory. The lander has a limited amount of memory and
can only receive transmissions from one rover at a time.
The lander can also upload data (and simultaneously free
up memory) to an orbiter whenever the orbiter is in view.

Formulating plans in this scenario involves dividing
goals between rovers in a method that minimizes the
amount of driving each rover must perform. Decisions
must be made not only to satisfy the requested goals, but
also to provide more optimal schedules. When assigning a
goal to a rover, the architecture must select the best rover
for the job and decide the order that each rover will
achieve its assigned goals. These decisions are further
complicated by the state and resource constraints
mentioned above. For instance, communication constraints
between the rover and orbiter may affect when certain
science operations can be performed. Low priority goals
may also be deleted if a rover is unable to achieve them
due to temporal or resource constraints.

2.1. ASPEN Planner

All of our architectures require a planner/scheduler to turn
abstract science goals into concrete activity schedules, and
we extend the ASPEN (Fukunaga et al. 1997) application
framework to satisfy this requirement. Using ASPEN
involved generating models of the lander and rovers in the
ASPEN modeling language. This language lets us define
the set of activities, resources, and state variables as well as
the interactions and constraints between them. The
application model essentially defines the types of activities
and resources that can occur in a given schedule. Figure 1
shows some examples of activity types for the multiple
rover domain. A pladschedule is a particular configuration
of instances of the activity and resource types. Some
activities are uncontrollable but may have effects that are
required by other activities. For example, sunrise and
sunset determine when solar panels are operational. These

activities are simply loaded at the start of planning. Next,
the high-level science goals can be inserted into the
schedule. Typically, these are unexpanded activities that
have unspecified parameter values, including the start time.
In addition, goals will usually have unsatisfied
requirements that can only be resolved with other
activities. From this, the planner/scheduler must generate a
plan that has all of these problems resolved.

Activity roverl-image {
i n t x , y , z ; / / locat ion of image
Reservations =

roverl-battery use 1 0 ,
roverl-memory use 1000,
roverl-location must-be < x , y , z > ;

1
Activity roverl-goto {

i n t x , y, z ; / / l o c a t i o n t o go t o
Reservations =

roverl-battery use 1 0 0 ,
roverl-location change-to < x , y , z > ;

I
Figure 1. Rover Activity Definitions

In ASPEN, unexpanded activities, unspecified
parameter values, unsatisfied requirements and violated
constraints are all considered conflicts in the schedule.
Therefore, the problem becomes one of finding a conflict-
free schedule. ASPEN has a library of algorithms designed
to search for a conflict-free schedule. One of the more
widely used algorithms is based on a technique called
“iterative repair” (Zweben et a1 1994). In this algorithm,
conflicts are classified and addressed in a local, iterative
fashion. First, a conflict from the set of conflicts is chosen
for repair. Then, a repair method is chosen as an operation
for resolving the conflict. Repair methods include moving
activities, adding new activities, deleting activities, setting
parameter values, and decomposing activities into
subactivities. For each method, other decisions may be
required. For example, when moving, an activity and
location must be selected. When setting a parameter, a new
value must be chosen. After making the appropriate
decisions, the scheduling operation is performed in hopes
of resolving the conflict. Finally, the new set of conflicts is
collected, and the algorithm repeats until no conflicts are
found, or a user-defined resource bound has been
exceeded.

2.2. MTSP Heuristics

One of the dominating characteristics of the multi-rover
application is the rover traversals to designated waypoints.
Decisions must be made not only to satisfy the requested
goals, but also to provide more optimal (i.e., efficient)
schedules. When not considering efficiency, one possible
schedule that achieves all science goals is to send one rover
to every target location. However, usually this would not
be the desired behavior, and therefore some schedule

optimization must be done. We have chosen to do this
optimization during the repair process. As certain types of
conflicts are resolved, heuristics are used to guide the
search into making decisions that will produce more
optimal schedules. In other words, when several options
are available for repairing a conflict, these options are
ordered based on predictions on how favorable the
resulting schedule will be.

The heuristics we have implemented are based on
techniques from the Multi-Traveling Salesmen Problem
(MTSP). The Traveling Salesman Problem (TSP) (Johnson
& McGeoch 1997) is one of finding a minimal tour for a
salesman that needs to visit a number of cities (and
typically return home). For MTSP, at least one member of
a sales team must visit each city such that total traveling
time is minimized. Salesmen are allowed to travel in
parallel with each other.

Many algorithms exist for solving both TSP and
MTSP problems. For a small number of locations (N<10)
optimal solutions can be found in a reasonable amount of
time. However, for larger sets of locations, finding optimal
solutions is too expensive (NP-hard) and approximate
algorithms can be used (Hochbaum 1997). Greedy
techniques can be used to find near optimal solutions in
polynomial time (Ow2)), where the resulting tour lengths
have been proven to be at most rlgN1+1 times the optimal
length. One such technique involves taking unvisited
locations and incrementally inserting each into an existing
planned tour between locations where it would cause the
smallest increase in tour length. We can easily extend this
algorithm to multiple travelers. Unvisited locations are
inserted into any of the tours when looking for the shortest
tour.

The multi-rover scenario fits naturally into the MTSP
class of problems, with only a few differences. First, the
rovers are typically not required to return to their original
locations (however, for sample return missions, this would
be necessary). This is a minor difference and does not
change the general problem’. Figure 2 shows three possible
insertions (one from each path) for a new location. Second,
while planning activities for multiple rovers, one is also be
concerned with the earliest finish time (i.e., makespan) of
the schedule. The schedule with the minimum total path
length (sum of rover path lengths) may not necessarily be
the schedule where all activities finish the earliest.
Reducing the total traverse time will reduce wear on the
rovers, while reducing the makespan will increase the
available science time. Finally, generating command
sequences requires reasoning about more than just the
paths of the rovers. Each rover has a set of flight rules and
a limited amount of resources. All commands, including
traverses, must be scheduled in a way that does not violate
any of the flight rules or resource constraints. Some of

’ We use the term “path” as opposed to “tour” to distinguish from
traversals that retum to the original location. Here, a path is a traversal
between science waypoints. We do not address path planning for the
purpose of obstacle avoidance.

Figure 2. Traveling Rovers

these constraints may inherently require sub-optimal travel
paths.

3. Many Architectures for Coordination

In the multi-rover application, activities and resources are
modeled for the lander and each of the rovers. The lander
provides the communication link as well as temporary data
storage. Each rover has activities such as traversing,
turning, taking images, taking spectrometer readings, and
digging. Each rover has its own resources such as battery
power, solar array power, and science instruments, and
state variables representing location and orientation. If we
let an ASPEN process execute on both the lander and each
of the rovers, we have to decide how to distribute the
model across the processes and how to coordinate them.

While there are many approaches to coordinating a set
of agents, the two most common either treats them as a
single master agent directing a set of slaves or treats them
as a set of competing peers. Actually, these two
architectures determine a whole spectrum of architectures
where a master agent gives its slaves progressively more
autonomy. In this section we describe the two extreme
approaches and an intermediate one. In each case the
collection of ASPEN processes interact to follow the
heuristics characterized by the greedy insertion MTSP
algorithm. While the master can run on the ground, on an
orbiter, on a lander, or on one of the rovers, we simplify
our presentation by always treat the lander as a master with
slave rovers.

3.1. Centralized Planning

The master/slave approach to automated planning for
multiple agents involves using a single centralized planner.
As shown in figure 3 , planning and scheduling for all
agents is done with a single ASPEN process on the lander,
this approach only needs one planning model to represent
the collection of activities, resources and constraints
associated with every agent. When planning is complete,
the relevant sub-plans (i.e., command sequences) are
transmitted to each “slave” rover for execution.

Planner

I
:ommands
goto 2 7 4 . 1 4 1 5 8 1 . 1 4 7 2 0 v
tu’
roc
got panoramic-spectra tu’ goto - 1 2 . 5 0 4 9 5 . 8 5 7 9 9 - 2 . 1 9 3 7 2
par t u r n - 0 . 1 3 6 4 9 2 - 0 . 3 0 9 4 6 1 0 . 3 0 8 7 0 4
got panoramic-spectra

goto - 4 9 2 . 5 4 - 1 5 0 . 2 2 5 1 8 . 1 1 3 8
roc t u r n - 0 . 7 4 6 4 3 3 - 0 . 5 6 3 2 6 9 0 . 1 5 7 2 6

r o c k g r o u p - s p e c t r a 1 4 . 0 3 3

goto 7 . 4 0 2 4 2 - 0 . 7 7 8 3 1 4 4 . 7 9 0 8 2
t u r n 0 . 0 9 6 4 9 1 - 0 . 3 2 3 3 4 8 0 . 5 2 6 8 6 5

I r o c k g r o u p - s q e c t r a 9 . ’ / 2 1 2 3

Figure 3. Centralized Planning

Implementing this approach involves collecting all of
the models and adding abstract activities with
decompositions to determine which rover to use for a
particular science goal. For instance, there are three ways
to decompose an abstract activity to take a picture - one
for each of the rovers. Its decomposition determines which
of the three rovers to use.

When generating command sequences for multiple
rovers, ASPEN uses two heuristics that implement a
greedy insertion MTSP algorithm. One is used to select a
decomposition of a generic science goal into a specific
science activity for one of the rovers. The other is used to
select a temporal location for the science activities when
they are moved. Both use the same evaluation criteria:
make the selection that results in the shortest path. For the
decomposition heuristic, this means choosing the rover that
has the shortest path after including a visit to the new
location. For the move heuristic, the new science activity is
moved to a time between two existing science activities,
which creates a new path shorter than any other possible
new path.

This approach has several advantages and
disadvantages. One major advantage is that the planning
process is conceptually simplified. All commands are
sequenced together, allowing any interactions to be easily
checked and planned for. Also, planning tends to be
computationally expensive and thus requires significant

computational power (e.g., a powerful processor).
Missions may have processing power available at one site,
but little at other sites (e.g., rovers). On the other hand, a
centralized planner would be less desirable for a mission
with evenly distributed processing power.

A major disadvantage becomes visible when the
rovers' environment is somewhat unpredictable. Here the
central planner will also have to monitor execution in order
to replan activities in response to unexpected failures or
fortuitous events. This will involve continuously
transmitting large amounts of data to and from the master
agent. Finally, this approach has a single point of failure.
If the agent running the planner is rendered inoperable,
remote planning will not be possible, and command
sequences will need to be uploaded from the ground.

3.2. Central Goal Allocation with Distributed Planning

To support more advanced missions with multiple
autonomous rovers, we need to consider distributed
planning. This would include rovers planning for
themselves, and for other rovers. If there is a slow
communication link between rovers, or between rover and
lander, a planner may be useful on each rover. This would
eliminate the need to constantly transmit monitoring
information across the slow communication link. By
balancing the workload, distributed planning can also be
helpful when individual computing resources are limited.
Distributed planning is especially difficult, however, when
rovers do cooperative or coordinated activities with shared
resources. This would include, for example, several rovers
communicating with a single lander.

As shown in figure 5, one approach to distributed
planning is to include one planner for each agent, in
addition to a central planner. The central planner develops
an abstract plan for all agents, while each agent planner
develops a detailed, executable plan for its own activities.
The central planner also acts as a router, taking a global set
of goals and dividing it up among the agents. For example,
a science goal may request an image of a particular rock
without concern for which rover acquires the image. The
central planner could assign this goal to the rover that is
closest to the rock in order to minimize the traversals of all
rovers. When planning with shared resources, aggregate
resources are divided equally among the agents that use the
resource. In other words, for N agents, each agent models
the resource with a capacity that is 1/N of the total
capacity. For atomic resources, the availability is time-
sliced among the agents. Each agent has the resource
available for 1/N of the total time. This guarantees that the
resulting set of plans will not have conflicts, even among
interacting activities.

This approach also has its advantages and
disadvantages. The obvious advantage is that the planning
process is distributed across multiple processors. This
reduces the workload on any one agent and allows

I I I

Figure 5. Distributed Planning

planning to be done in parallel. Another major advantage is
faster reaction time with less communications. With a
planner onboard the rovers, there is a tight loop between
planning and execution. This allows shorter turn-around
times from execution failures to command sequence
updates, which in turn decreases rover idle time. Also, the
rovers only have to transmit subsets of their status
information, and the central goal allocation planner only
transmits smaller abstract plans to the rovers. The only
time when the central goal allocation planner has to replan
occurs when a local planner runs into a situation that it
cannot resolve.

The major disadvantage of this approach stems from
the partitioning of goals and resources from the master to
the slaves. Once the goals have been assigned, there is no
way for them to be reassigned to different rovers. In
addition, the equal division of shared resources is an
oversimplification. One rover may need a disproportionate
amount of a particular resource. This type of resource
division limits the set of possible solutions, possibly
forcing plans to be sub-optimal.

3.3. Contract Net Protocol

At its extreme, migrating the planning/scheduling process
onto the rovers leaves a central auctioneer to distribute
goals, and the rovers use planning/scheduling to determine
appropriate bids for each goal as it arises. This approach is
an instance of the contract net protocol (Smith 1980,
Sandholm 1993) - a commonly used coordination
paradigm within the distributed artificial intelligence
community. Within a contract net protocol, a manager
announces a task to a set of contractors, each contractor
bids for it, and the manager awards the task to the
contractor with the best bid.

Goal Set

'. ., = _ -
\".? <y; +,?'

Figure 6. Contract Net Approach

As shown in figure 6 , implementing the greedy
insertion MTSP algorithm using a contract net protocol
involves making the lander take abstract tasks and
incrementally transmit them to each rover. Upon receiving
a task, a rover uses an ASPEN process with the MTSP
heuristics to try to fit the task into its current schedule.
Upon succeeding, a rover bids the distance it would travel
upon including the new task. Rovers that fail to insert the
task within a time limit do not participate in the auction.
Upon receiving all bids, the lander awards the task to the
rover with the smallest bid. The rovers bid the total
distance in order to minimize the maximum distance
traveled by any rover. Bidding the incremental distance
would bias the system toward solutions that minimize the
sum of the travel distances.

This approach has many of the centralized goal
allocation algorithm's advantages and disadvantages.
Once again, the planners on the rovers facilitate tight
feedback between planning and execution without high
communications overhead, and partitioning the shared
resources on the lander leads to sub-optimal plans. The
one difference between the decentralized planning
approaches involves the information used to partition the
goals. Where the previous approach ignored resources on
the rovers and partitioned the goals strictly based on
expected path distances, the contract net approach
partitioned goals based on path distances after taking other
rover resources into account. This change comes at the
cost of each rover's having to repair its schedule many
more times in order to compute intermediate path distances
for partitioning.

4. Comparisons

The three approaches presented in this paper for
coordinating multiple agents have a number of functional
differences. In addition, these approaches were
empirically evaluated using a geological scenario for a
number of different metrics. In this section we describe
each of these metrics and present the empirical results
gathered for each approach.

4.1. Functional Comparison

One main functional difference between approaches is that
both the distributed planning approach and contract net
approach can take advantage of parallel processing while
the centralized planning approach cannot. For the
distributed planner, once goals have been allocated to the
individual agents (rovers), their planners can run in
parallel. Similarly, in the contract net approach, the
bidding process can utilize parallel computation by the
individual planners to compute the cost of achieving an
additional goal on each rover.

Another functional comparison is the number of
communications required in each direction (lander to rover
(LR), rover to lander (RL)) for each planning cycle for N
rovers and G goals. In these computations presume that
the centralized computations are occurring on the lander.
The centralized planning approach requires N RL and N
LR communications for respectively collecting the
individual rovers initial states and distributing the resultant
plans. The distributed planning approach also requires N
RL communications (to denote initial rover locations) and
N LR communications to distribute goal sets. The contract
net approach requires G iterations, where each iteration
consists N LR communications (to send out a new goal)
and N RL communications (to respond with a new plan
cost). Note that the message sent for a complete plan (as
required by the completely centralized approach) is likely
to be a longer message than for an initial state (as required
by the centralized approach) or goal set (as required by the
distributed planning approach). These messages are ldcely
in turn to be longer than messages for a goal or a plan's
cost (required by the contract net approach), or initial state
(centralized).

Another functional difference is the degree of
autonomy offered by an individual rover with respect to
possible replanning. In the centralized planner approach, a
failure by a rover that cannot plan would require
communication with the central planner before resuming
execution. In the case of the distributed planning or
contract net approach, if the failure could be planned
around locally by the failing rover, such communication
would not be necessary.

4.2. Empirical Comparisons

In order to test these different approaches, problems were
generated from the geological scenario described in

Section 2 of this paper. In this scenario, science goals are
for gathering spectral data at different locations with the
overall goal of classifying different rock types. These
goals are generated using a machine learning clustering
algorithm. To produce a good testing set, 10 different
(random) rockscapes were used. For each rockscape the
following steps were taken. First, the three rovers are
placed in different sections of the landscape. Then from
these initial locations each rover is asked to perform a set
of panoramic spectral readings to gather initial data about
the surrounding area. Based on this data the clustering
system begins to form rock clusters and requests additional
data readings at particular locations to help better
discriminate between the different clusters (or rock types).
This process was run for 20 iterations on each rockscape
(i.e. 200 total iterations), where an iteration consists of the
clustering algorithm generating a set of goals and data for
those goals being gathered and used to further refine the
rock clusters. In each iteration 12 goals for different
spectral readings are produced. Thus for each rockscape
120 different science goals were produced.

Using these goal sets, we then ran 10 trials for each of
the three architectures. In these tests we calculated the
following statistics (averaged over 200 iterations):

0 Number of goals achieved (max of 12 per iteration)
Average distance traveled per goal achieved

0 Computation time to generate plans (sum and
makespan)

Planning time was calculated in two modes for
distributed planning approach and the contract net protocol
approach. One mode utilized make-span where it was
assumed these methods could be run using parallel
processors. The other mode utilized cumulative planning
time; thus for the distributed planning approach planning
time for the master and each rover is summed and for the
contract net approach, the time for each auction summed.

The results of these experiments are shown in Table 1.
The contract net approach outperformed the centralized
and distributed planning approaches in terms of number of
goals achieved. This is because the contract net approach
allows the individual planners to each try to achieve every
goal - a goal will be deleted only if all rovers cannot plan
for it. In the distributed planner case the goals are
distributed before planning attempts are made, if the
assigned rover cannot achieve a goal, the other rovers do
not have a chance to try. In the centralized approach, the
planner may delete the goal (with a certain probability) if it
is having trouble fitting it into the global plan. Reducing
this probability would increase the number of goals
achieved but would also increase the CPU cost. The
average distance traveled per goal is comparable for all of
the approaches. Compared to the centralized approach, the
distributed planning approach incurs a greater cost in total
computation, but the average makespan of the CPU time is
lower because it can construct individual plans in parallel.

The contract net approach uses considerably more CPU
time because it invokes each of the individual planners G
times for G overall goals. As stated previously, this is
likely why the cantract net achieves more goals on
average.

Ave#
CPU Time Time Travel I Goals
Makespan ZCPU Ave Dist

Centralized 18.52 18.52
Planner
Distributed 121.2 25.07 14.11
Planner
Contract 155.89 85.65

Table 1 : Empirical Comparison of Coordination Methods

5. Related Work
While there is a large literature on cooperating robots, most
of it focuses on behavioral approaches that do not
explicitly reason about partitioning goals and planning
courses of action. Two notable exceptions are GRAMMPS
(Bumitt & Stentz 1998) and MARS (Fischer et al. 1995).
GRAMMPS is a system coordinating multiple mobile
robots visiting locations in cluttered partially-known
environments. This system shares quite a bit similarity
with our central goal allocation with distributed planning
architecture. They both solve an MTSP problem to
distribute targets, and they both have low level planners on
each mobile robot. The difference involves our focusing
on multiple resources and exogenous events while their
focus was on path planning while learning a terrain. Also,
GRAMMPS uses simulated annealing where we use a
greedy approach to solving the MTSP problem.

MARS on the other hand is a cooperative
transportation scheduling system that shares many
similarities with our contract net approach. Once again the
differences involve our focus on multiple resources and
exogenous events. Also, the transportation agents bid how
much it costs to add a goal to its path. This resulted in
minimizing the total distance traveled by all agents. Our
rovers bid the total path length after inserting the goal.
This difference made our rovers spread out the goals to
minimize the maximum distance traveled by any one rover.
Finally, MARS also provides a “stock market” for
secondary auctions after the initial assignment of goals.
Including this facility while reasoning about multiple
resources is a future research direction.

6. Conclusions
This paper has described and evaluates three methods for
coordinating multiple agents. These agents interact in two
ways. First, they are able to work together to achieve a
common pool of goals which would require greater time to
achieve by any one of the agents operating independently.
Second, the agents share resources that are required by the

actions required to accomplish the goals. The first
coordination method described is a centralized scheme in
which all of the coordination is done at a central location
and the agents have no autonomy at the planning level.
The second method performs goal allocation using a
centralized heuristic planner and (distributed) planners for
the individual agents perform detailed planning. The third
method uses a contract net protocol to allocate goals and to
(distributed) planners for the individual agents perform
detailed planning. We compare these approaches and
empirically evaluate them using a geological science
scenario in which multiple rovers are used to sample
spectra of rocks on Mars.

Acknowledgements

This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration. Portions of this work were supported by
the Autonomy Technology Program, managed by Dr.
Richard Doyle and with Melvin Montemerlo as the
headquarters program executive, NASA Code SM.

References

B. L. Bumitt and A. Stentz 1998. GRAMMPS: A
Generalized Mission Planner for Multiple Mobile Robots
In Unstructured Environments. In Proceedings of ICRA-
98.

D. Cook, P. Gmystrasiewicz, and L. Holder 1996.
Decision-Theoretic Cooperative Sensor Planning. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 18(18).

T. Estlin, S. Hayati, A. Jain, J. Yen, G. Rabideau, R.
Castano, R. Petras, S. Peters, D. Decoste, E. Tunstel, S.
Chien, E. Mjolsness, R. Steele, D. Mutz, A. Gray, T. Mann
1999. An Integrated Architecture for Cooperating Rovers.
In Proceedings of the International Symposium on
Art&ial Intelligence Robotics and Automation in Space
(ISAIRAS), Noordwij-le, The Nztherlands.

K. Fischer, J. Muller, M. Pischel, and D. Schier 1995, “A
Model For Cooperative Transportation Scheduling,” in
Proceedings of the First International Conference on
Multi-Agent Systems. San Francisco, CA.

A. Fukunaga, G. Rabideau, S. Chien, D. Yan 1997.
Towards an Application Framework for Automated
Planning and Scheduling. In Proceedings of the 1997
International Symposium on ArtlJicial Intelligence,
Robotics and Automation for Space, Tokyo Japan.

J. Hagopian, T. Maxwell, and T. Reed 1994. A Distributed
Planning Concept for Space Station Payload Operations.

Third Symposium on Space Mission Operations and
Ground Data Systems, Greenbelt, MD.

D. Hochbaum 1997. Approximation Algorithms for NP-
hard Problems, PWS Publishing Company.

D. Johnson and L. McGeoch 1997. The Traveling
Salesman Problem: A Case Study in Local Optimization.
Local Search in Combinatorial Optimization, edited by E.
H. L. Aarts and J. K. Lenstra, John Wiley and Sons,
London, pp. 215-310.

JPL 1999. http://www,iol.nasa.gov/missions/

M. Mataric 1995. Issues and Approaches in the Design of
Collective Autonomous Agents. Robotics and Autonomous
Systems, 16 (2-4). pp. 321-331.

J. Muller 1996, The Design of Intelligent Agents, A
Layered Approach, Lecture Notes in Artificial Intelligence,
Springer-Verlag.

L. Parker 1998. ALLIANCE: An Architecture for Fault
Tolerant Multi-Robot Cooperation. ZEEE Transactions on
Robotics and Automation, 14 (2).

G. Rabideau, S. Chien, P. Backes, G. Chalfant, and K. Tso
1999. A Step Towards an Autonomous Planetary Rover.
Space Technology and Applications International Forum
(STAZF), Albuquerque, NM.

T. Sandholm. 1993. An Implementation of the Contract
Net Protocol Based on Marginal Cost Calculations. In
Proceedings of AAAI-93.

G. Smith. 1980. The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver. IEEE Transactions on Computers, 29(12).

http://www,iol.nasa.gov/missions

